معادلات دیفرانسیل غیرخطی برای تومورهای سرطانی، سیستم ایمنی و نقش تئوری انشعاب و آشوب

پایان نامه
چکیده

در این پایان نامه توجه ما به مدل معادلات دیفرانسیل معمولی غیرخطی در تومورهای لمفاوی و دستگاه ایمنی بدن است. به دلیل این که سیستم های ما غیرخطی و وابسته به پارامتر هستند لذا تئوری انشعاب به ما کمک می کند که این نوع سیستم ها را از نقطه نظر جواب های دوره ای و پایداری و عدم پایداری آن ها مورد تجزیه و تحلیل قرار می دهیم. دو سیستم معادلات دیفرانسیل داریم. در مدل اول که مربوط به سیستم ایمنی بدن است با توجه به تاخیر زمانی، به بررسی پایداری نقطه تعادل پرداخته و دینامیک جواب های دوره ای را با استفاده از انشعاب هاف تحلیل می کنیم. در سیستم با تأخیر زمانی و پاسخ ایمنی بدن با استفاده از آنالیز عددی، پایداری نقطه تعادل را مورد بحث قرار داده و توجه می کنیم اگر تأخیر زمانی بزرگ شود احتمال جاذب های آشوبناک وجود دارد که به آن پرداخته می شود. اما در سیستم دوم که مربوط به تومور لمفاوی است با توجه به انشعاب هاف دینامیک تومور سرطانی مورد بررسی قرار می گیرد وجود جواب های نوسان کننده ی دوره ای پایدار تحقیق خواهد شد. توجه داریم که در این نوع موارد دور حدی و جواب های دوره ای نقش اساسی در معادلات دیفرانسیل تومور سرطانی ایفا می کند. اهمیت به دست آمدن جواب های دوره ای و دور حدی (با استفاده از انشعاب هاف) در این است که با وضعیت دینامیک هر توموری بعد از زمانی معین (که جواب دوره ای آن است) به حالت اولیه باز می گردد. در خاتمه با توجه به ارائه ی مثال هایی برای هر کدام از این سیستم ها و استفاده از شبیه سازی عددی نتایج را شرح می دهیم.

منابع مشابه

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

متن کامل

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

متن کامل

کران بالا برای فشار سیال داخل لوله بوسیله معادلات دیفرانسیل

شبکه­هایی بسته از لوله­های حاوی یک جریان پرفشار از یک سیال در بسیاری از پدیده­های طبیعی و دست­ساز وجود دارند. دینامیک چنین شبکه­هایی به پارامترهای زیادی وابسته است. از یک سو به کنش و واکنش پیچیده بین بدنه جریان و مواد تشکیل دهنده هر یک از لوله­ها و از سویی دیگر به اتصالات بین لوله­ها در شبکه وابسته است. زیرا جریان در لوله­های مختلف یک شبکه در نقاط اتصال بر یکدیگر اثر می­گذارند. یک روش جایگزین ب...

متن کامل

الگوهای انشعاب ناخودگردان برای معادلات دیفرانسیل یک بعدی

در این پایان نامه ، ما یک نگرش جدید به انشعاب های ناخودگران معادلات دیفرانسیل یک بعدی را مطرح می کنیم. ابزار اصلی ما در این جا بر اساس مفهوم خاصی از جاذبه و دافعه برای سیستم های ناخودگردان است. تحت کاربرد این مسئله انشعاب های مدل جمعیت زیستی را بررسی می کنیم.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023